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A finite element formulation is presented to model the dynamic as well as static
response of laminated composite plates containing integrated piezoelectric sensors
and actuators subjected to both mechanical and electrical loadings. The
formulation is based on the classical laminated plate theory and Hamilton’s
principle. In this formulation, the mass and stiffness of the piezo-layers have been
taken into account. A four-node non-conforming rectangular plate bending
element is implemented for the analysis. A simple negative velocity feedback
control algorithm coupling the direct and converse piezoelectric effects is used to
actively control the dynamic response of an integrated structure through a closed
control loop. The model is validated by comparison with existing results
documented in the literature. Several numerical examples are presented. The
influence of stacking sequence and position of sensors/actuators on the response
of the plate is evaluated.
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1. INTRODUCTION

The rapid development of space structures and high-performance flexible
mechanical system has stimulated extensive research into smart structures and
systems over the past several years. A smart structure can be defined as a structure
or structural component with bonded or embedded sensors and actuators as well
as control systems, which change the shape and dynamic behavior of the structure.
Smart structures and systems have self-inspection and inherent adaptive
capabilities. They can respond almost instantaneously to the changes in the
external environment and hence can greatly enhance the performance of existing
structures. The research and implementation of smart structures and systems
opens new opportunities for radical changes in the design of adaptive structures
and high-performance structures.
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Recent studies on smart structures have shown that piezoelectric materials can
be an effective alternative to the conventional discrete sensing and control systems.
Piezoelectric materials have coupled mechanical and electrical properties. They
generate an electric charge when subjected to a mechanical deformation, a
property called the direct piezoelectic effect. Conversely, mechanical stress or strain
is produced by an applied electric field, which is called the converse piezoelectric
effect. Bonding or embedding piezoelectric patches in a structure can act as sensors
to monitor or as actuators to control the response of the structure. In addition,
piezoelectric materials have several other attractive advantages such as fast
response, large force output, being inexpensive and lightweight.

Additionally, advances in design and manufacturing technologies have greatly
enhanced the use of advanced composite materials for aircraft and aerospace
structural applications. Due to their structural advantages of high stiffness-to-
weight strength-to-weight ratios, composite materials can be used in the design of
smart structures and hence significantly improve the performance of aircraft and
space structures. Investigators have developed several analytical and numerical
models for the laminated composite structures with integrated piezoelectric sensors
and actuators. The simplest and often used model is the equivalent single layer
model, which includes the classical laminated plate theory [1–3], first order shear
deformation theory [4–7] and higher-order theory [8]. Another model for thick
laminated composite structures is layerwise theory [9–11]. Besides, some 3-D
models [12–16] and hybrid model [17] are also available. These models have their
own advantages and disadvantages in terms of the accuracy, efficiency and
computational effort.

In this paper, a finite element model is developed for the shape control and
active vibration suppression of laminated composite plates with integrated
piezoelectric sensors and actuators. The model is based on the classical laminated
plate theory and the principle of virtual displacements. Four-node rectangular
non-conforming plate bending elements are used to model the laminated
composite plate. The direct piezoelectric equation is used to calculate the total
charge created by the strains on the sensor electrodes; and the actuators provide
a damping effect on the composite plate by coupling a negative velocity feedback
control algorithm in a closed control loop. A Fortran program has been made
using the derived formulation. The model is validated by comparing with results
available in the literature. It is then used to simulate the shape control and active
free vibration suppression of a simply supported laminated composite plate. The
effect of stacking sequence and position of sensors/actuators on the response of
the plate is also investigated.

2. PIEZOELECTRIC EQUATIONS

A laminated composite plate with integrated sensors and actuators is shown in
Figure 1. It is assumed that each layer of the plate possesses a plane of elastic
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Figure 1. A typical laminated piezoelectric composite plate.

symmetry parallel to the x–y plane, the kth layer’s lamina constitutive equations
coupling the direct and converse piezoelectric equations can be expressed as [18]:
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where (Q� ij , ēij , ēij ) are, respectively, the plane-stress reduced elastic constants, the
piezoelectric constants and the permittivity coefficients of the kth lamina in its
material coordinate system, and (si , oi , Ei , Di ) are the stress, strain, electric field
and electric displacement components, respectively, to the material coordinate
system. The plane-stress reduced elastic constants Q� ij are given as

Q� 11 =
E1

1− n12n21
, Q� 12 =

n12E2

1− n12n21
(3)

Q� 22 =
E2

1− n12n21
, Q� 66 =G12. (4)

It should be noted that the piezoelectric constant matrix [ē] in equation (1) is
sometimes unavailable and it can be expressed in terms of the commonly available
piezoelectric strain constant matrix [d ] using the relation

[ē]= [d ][Q� ] (5)
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where

[d]= & 0
0
d31

0
0
d32

0
0
0'. (6)

Upon transformation, the lamina piezoelectric equations can be expressed in
terms of the stresses, strains and electric displacements in the plate coordinates as

8Dx

Dy

Dz9
k

= & 0
0
e31

0
0
e32

0
0
e36'

k
8 ox

oy

gxy9
k

+ &e11

e12

0

e12

e22

0

0
0
e33'

k
8Ex

Ey

Ez9
k

(7)

8sx

sy

sxy9
k

= &Q11

Q12

Q16

Q12

Q22

Q26

Q16

Q26

Q66'
k
8 ox

oy

gxy9
k

− &000 0
0
0

e31

e32

e36'
k
8Ex

Ey

Ez9
k

. (8)

Equations (7) and (8) can also be written as

{D}k =[e]k{o}k +[e]k{E}k (9)

{s}k =[Q]k{o}k −[e]Tk {E}k . (10)

3. CLASSICAL LAMINATED PLATE THEORY

The classical laminated plate theory (CLPT) is based on the Kirchhoff
assumption, which leads to the displacement field [18]

u(x, y, z, t)= u0(x, y, t)− z
1w0

1x
(11)

v(x, y, z, t)= v0(x, y, t)− z
1w0

1y
(12)

w(x, y, z, t)=w0(x, y, t) (13)

where u, v and w are the displacement components in the x-, y- and z-directions,
respectively, and (u0, v0, w0) are the midplane displacements.

We define

{u}= {u v w}T

{ū}= {u0 v0 w0 1w0/1x 1w0/1y}T

where {ū} is the nodal degrees-of-freedom. Then equations (11)–(13) can be
rewritten as

{u}=[H]{ū} (14)
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where
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In this work, the rectangular non-conforming plate bending element [18] is used.
The generalized displacements u0 and v0 are interpolated over an element as

u0(x, y, t)= s
4

i=1

u0i (t)ci (x, y) (16)

v0(x, y, t)= s
4

i=1

v01(t)ci (x, y) (17)

where ci are the linear interpolation functions

ci = 1
4(1+ jji )(1+ hhi ) i=1, 2, 3, 4 (18)

w0 is interpolated over an element as

w0(x, y, t)= s
4

i=1 $w0i (t)gi1(x, y)+
1w0i (t)

1x
gi2(x, y)+

1w0i (t)
1y

gi3(x, y)% (19)

where gij ( j=1, 2, 3) are the non-conforming Hermite cubic interpolation
functions

gi1 = 1
8(1+ jji )(1+ hhi )(2+ jji + hhi − j2 − h2) (20)

gi2 = 1
8ji (1+ jji )2(jji −1)(1+ hhi )a0 (21)

gi3 = 1
8hi (1+ hhi )2(hhi −1)(1+ jji )b0 i=1, 2, 3, 4 (22)

where a0 and b0 are the half length of the rectangular element along x- and
y-directions respectively.

Substituting equations (16), (17) and (19) into equation (14) yields

{u}=[H][N]{ue} (23)

where
[N]= [[N1] [N2] [N3] [N4]] (24)
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The non-zero infinitesimal strains associated with the displacements are given
by
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or, in vector form

{o}= {o(0)}− z{o(1)}. (27)

Substituting equation (23) into equation (26) yields

{o}=[B]{ue} (28)

where

[B]= [[B1] [B2] [B3] [B4]]= [A]− z[C] (29)

[Bi ]= [Ai ]− z[Ci ] (30)
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4. FINITE ELEMENT MODEL

4.1.  

To derive dynamic equations of motion for the laminated composite plate with
integrated piezoelectric sensors and actuators, we use Hamilton’s principle:

d g
t2

t1

[T−U+W ] dt=0 (33)

where T is the kinetic energy, U is the strain energy, and W is the work done by
the applied forces. To account for the sensors’ mass and actuator’s mass and
stiffness, the piezoelectric layers are treated as other layers with different material
properties in deriving the dynamic equations of motion.

The kinetic energy at the element level is defined as

Te =
1
2 gVe

r{u̇}T{u̇} dv (34)

where Ve is the volume of the plate element. The strain energy can be written as

Ue =
1
2 gVe

{o}T{s} dv. (35)

The work done by the external forces is

We =gVe

{u}T{ fb} dv+gS1

{u}T{ fs} ds+ {u}T{ fc} (36)

where { fb} is the body force, S1 is the surface area of the plate element where the
surface force { fs} is specified and { fc} is the concentrated load.

We assume that the quasi-static electric field vector {E} can be defined by the
electrical potential f as

E=−9f (37)

where 9 denotes the gradient operator.
When a voltage Ve is applied to the actuator layer with thickness hA in the

thickness direction, the electric field vector {E} can be expressed as

{E}= {0 0 1/hA}TVe = {Bv}Ve. (38)

Substituting equations (34)–(36) into equation (33) and using equations (10),
(23), (28) and (38), the dynamic matrix equations can be written as

[Me]{üe}+[Ke]{ue}= {Fe}+ {Ke
av}Ve (39)
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where

{Ke
av}=gVe

[B]T[e]T{Bv} dv= {Ke
1}− {Ke

2} (40)

[Me]= s
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−1 g
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rk [N]T$g
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[B]T[Q][B] dv=[Ke
A ]− [Ke

AC ]− [Ke
AC ]T + [Ke
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[N]T[H]T{ fb} dv+gS1

[N]T[H]T{ fs} ds+[N]T[H]T{ fc} (43)
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and NL denotes the number of layers and J is the Jacobian matrix.
Assembling the element equations gives the global dynamic equation

[M]{ü}+[C]{u̇}+[K]{u}= {F}+ {Fv} (49)

where {F} is the external mechanical force vector and {Fv} is the electrical force
vector:

{Fv}= {Kav}{V}. (50)
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4.2.  

Since no external electric field is applied to the sensor layer and the charge is
collected only in the thickness direction, only the electric displacement Dz is of
interest, and it can be derived from equation (7) as

Dz = e31ox + e32oy + e36gxy = {e3}{o} (51)

where

{e3}= {e31 e32 e36}. (52)

The total charge developed on the sensor surface is the spatial summation of
all the point charges on the sensor layer. Hence, the closed circuit charge measured
through the electrodes of a sensor patch in the kth layer is [19]

q(t)=
1
2 $gS2(z= zk )

Dz dS+gS2(z= zk+1)

Dz dS% (53)

where S2 is the effective surface electrode of the patch, which defines the integration
domain where all the points are covered with surface electrode on both sides of
the sensor lamina. In the present work, it is assumed that the whole piezoelectric
lamina serves as the effective surface electrode.

Assuming that the sensor patch covers several elements, then the total charge
q(t) can be written as follows:

q(t)= s
Ns

j=1

1
2 $gSj (z= zk )

Dz dS+gSj (z= zk+1)

Dz dS% (54)

where Ns denotes the number of elements and Sj is the surface of the jth element.
Using equations (28) and (51), equation (54) can be rewritten as

q(t)= s
Ns

j=1 $12 g
1

−1 g
1

−1

{e3}(−(zk + zk+1)[B])=J= dj dh%{ue
j }. (55)

The current on the surface of a sensor can be expressed as

i(t)=
dq(t)
dt

. (56)

When the piezoelectric sensors are used as strain rate sensors, the current can be
converted into the open circuit sensor voltage output VS as

VS (t)=Gci(t)=Gc
dq(t)
dt

(57)

where Gc is the gain of the current amplifier.

4.3.    

The distributed sensor generates a voltage when the structure is oscillating; and
this signal is fed back into the distributed actuator using a control algorithm, as
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shown in Figure 4. The actuating voltage Ve under a constant gain control
algorithm can be expressed as

Ve =GiVS =GiGc
dq
dt

(58)

where Gi is the gain to provide feedback control. It must be noted that the higher
order modes may become unstable with the increase of control gain. In this paper,
we mainly consider the lower order modes which are predominant in vibration
suppression problems.

Substituting equation (55) into equation (58) yields

Ve =G s
Ns

j=1

{K j
sv}{u̇e

j } (59)

where

{K j
sv}=

1
2 g

1

−1 g
1

−1

{e3}(−(zk + zk+1)[B])=J= dj dj (60)

G=GiGc . (61)

Hence the system actuating voltages can be written as

{V}=[G]{Ksv}{u̇} (62)

where [G] is the control gain matrix, which provides an uncoupled collocated
control.

In the feedback control, the electrical force vector {Fv} can be regarded as a
feedback force. Substituting equation (62) into equation (50) gives

{Fv}= {Kav}[G]{Ksv}{u̇}. (63)

We define

[C*]=−{Kav}[G]{Ksv}. (64)

Thus, the system equation of motion equation (49) becomes

[M]{ü}+([C]+ [C*]){u̇}+[K]{u}= {F}. (65)

As shown in equation (65), the voltage control algorithm equation (58) has a
damping effect on the vibration suppression of a distributed system.

It must be noted that the damping matrix in equation (65) is not diagonal but
diagonally dominant. This cannot guarantee the stability of the control system.
Hence, the stability of a given control system must be examined so that an
appropriate control gain can be chosen.
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Figure 2. Piezoelectric KYNAR cantilever beam.

5. NUMERICAL EXAMPLES AND DISCUSSION

Two cases are studied in this section. The first case is the static analysis of a
cantilever beam. The results obtained are compared with Koconis et al. [4] to
validate the proposed model. The second case involves the shape control and active
free vibration suppression of a simply supported laminated composite plate by
integrated piezoelectric sensors and actuators. The influence of feedback control
gain, ply orientation and the sensor/actuators’ position on the response of the plate
is analyzed.

5.1.   

The cantilever beam, which consists of two identical layers of KYNAR
piezofilm, is shown in Figure 2. The material properties for KYNAR are listed
in Table 1. The beam is evenly discretized into eight plate elements.

Various external voltages between 0 and 500 V are applied to the KYNAR
piezofilms. The applied external voltages induce strain in the beam, which
generates forces to bend the cantilever. The calculated tip deflections of the
cantilever beam are shown in Figure 3. It is seen that the results obtained by the
present model are in good agreement with those of Koconis et al. [4].

T 1

Material properties

KYNAR G-1195 T300/976

E1 (GPa) 6·85 63·0 150·0
E2 (GPa) 6·85 63·0 9·0
n12 0·29 0·29 0·3
G12 (GPa) 0·078 24·8 7·1
G13 (GPa) – – 7·1
G23 (GPa) – – 2·5
Density r (kg/m3): – 7600 1600
d31 (pm/V) 23·0 −166 –
d32 (pm/V) 4·6 −166 –
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Figure 3. Effect of actuate voltages on tip deflection of the KYNAR beam. ——, Present model;
– · –, Koconis et al. [4].

5.2.       

Having validated the model and finite element method code, we present a
numerical example to demonstrate the use of this code for simulating the response
of laminated composite plates with integrated piezoelectric sensors and actuators
in active deformation and vibration control.

Figure 4 shows a laminated composite plate with integrated piezoelectric sensors
and actuators as well as a closed control loop. The plate dimensions considered
are a= b=400 mm and h=0·8 mm. The plate is constructed of four layers of
T300/976 unidirectional graphite/epoxy composites. PZT G1195N piezoceramics,

Figure 4. Laminated composite plate with integrated piezoelectric sensors and actuators.
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Figure 5. Effect of symmetric ply orientation on the transverse deflection. ——, [−15/15/15/
−15]; – · –, [−30/30/30/−30]; – – –, [−45/45/45/−45].

which have a thickness of 0·1 mm, are symmetrically bonded on the upper and
lower surfaces of the plate. The piezoceramics are modeled as two additional
layers. The material properties of the T300/976 composities and PZT G1195N
piezoceramics are shown in Table 1. Unless otherwise specified, [−30/30/30/−30]

Figure 6. Effect of asymmetric ply orientation on the transverse deflection. ——,
[−15/15/−15/15]; – · –, [−30/30/−30/30]; – – –, [−45/45/−45/45].
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Figure 7. Centerline deflection of the plate under uniformly distributed load and different actuate
voltages. w, 0 V; – · –, 40 V; ×, 80 V; – – – 130 V.

symmetric angle-ply laminate layup is used. The plate is discretized into identical
8×8 plate elements. The simple supported boundary condition is considered:

v0 =w0 =
1w0

1y
=0 at x=0, a

u0 =w0 =
1w0

1x
=0 at y=0, b.

First, the static analysis and deformation control of the composite plate are
presented. In the static analysis, all the piezoceramics on the upper and lower
surfaces of the plate are used as actuators. The upper layer is polarized in
the direction of the applied voltages and the lower layer is polarized in the
opposite direction of the applied voltages. Equal-amplitude voltages with an
opposite sign are applied across the thickness of the upper and lower piezoelectric
layers respectively.

Figure 5 shows the variational tip deflection (centre point deflection) for
different applied actuate voltages under different symmetric angle-ply orientation.
It is observed that with an increase of the angle, a decrease of tip deflection under
certain applied actuate voltage is observed. Figure 6 shows the effect of
antisymmetric angle-ply orientation on the tip deflection of the laminated plate.
Similarly, the increase of the angle for the antisymmetric angle-ply layup has an
inverse influence on the plate’s transverse deflection.

The effect of the actuate voltages on the shape control of the plate is also
investigated. The plate is originally flat and then is exposed to a uniformly
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Figure 8. The first four vibration modes of the plate.

distributed load of 50 N/m2. To flatten the plate, active voltage is input
incrementally in the numerical simulation and the calculations proceeded with
until the centerline deflection of the plate is reduced to a desired tolerance. Figure
7 shows the calculated centerline deflection of the composite plate under different
actuate voltages. It can be concluded from Figure 7 that with proper piezoelectric
actuators and actuate voltage, it is feasible to generate enough forces to control
the shape of laminated composite plates.

The same configuration of the laminated composite plate given in Figure 4 is
considered again to carry out the simulation of active free vibration suppression
of the composite plate using the integrated sensors and actuators. In active
vibration suppression, the upper piezoceramics are served as sensors and the lower

T 2

Calculated natural frequencies of the plate (rad/s)

Laminate ply orientation
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Natural frequency [−15/15]s [−30/30]s [−45/45]s [−15/15]as [−30/30]as [−45/45]as

1 165·573 174·007 178·191 165·611 174·748 179·437
2 354·818 383·470 401·851 355·432 388·594 424·174
3 481·046 464·894 452·816 473·784 452·083 424·174
4 637·596 658·804 670·703 644·601 679·143 697·131
5 688·555 754·180 826·348 681·514 739·077 821·397
6 935·439 936·055 858·164 943·816 914·986 824·449

[·/·]s =symmetric, [·/·]as =antisymmetric.
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ones as actuators. The piezoceramics are evenly divided into four sensors and
actuators. So, each sensor and actuator is meshed with 16 identical elements.

Table 2 shows the first six natural frequencies of the composite plate under
different symmetric and antisymmetric angle-ply laminate layup and Figure 8
shows the first four vibration modes of the plate. It can be seen from Table 2 that
for both symmetric and antisymmetric angle-ply orientation, the increase of the
angle results in the increase of the first two natural frequencies. Under the same
orientation angle, the symmetric angle-ply laminated plates have smaller first two
natural frequencies compared with those of antisymmetric layup.

To control the free vibration of the plate, the collocated sensors and actuators
should be coupled into sensor/actuator (S/A) pairs through closed control loops.
In the present work, a simple negative velocity feedback control algorithm is used.
It is assumed that the composite plate is vibrating freely due to an initial
disturbance. The modal superposition technique is used to decrease the size of the
problem. The first six modes are used in the modal space analysis and an initial
modal damping ratio for each of the modes is assumed to be 0·8%. The
Newmark-b direct integration method is then used to calculate the transient
response of the plate. The parameters g and b are taken as 0·5 and 0·25
respectively.

Figure 9 shows the effect of feedback control gain G on the transient response
of the plate. It can be seen that with higher control gain, the vibration of the plate

Figure 9. The effect of feedback control gain G on the plate’s response.
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Figure 10. Effect of symmetric ply orientation on the plate’s response (G=1200). – – –,
[−15/15/15/−15]; ––, [−30/30/30/−30]; – · –, [−45/45/45/−45].

Figure 11. Effect of asymmetric ply orientation on the plate’s response (G=1200). – – –,
[−15/15/−15/15]; ––, [−30/30/−30/30]; – · –, [−45/45/−45/45].
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Figure 12. The position of sensor/actuator pairs.

Figure 13. The effect of sensor/actuators’ position on the plate’s response (G=5000).
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Figure 9 shows the effect of feedback control gain G on the transient response
of the plate. It can be seen that with higher control gain, the vibration of the plate
is damped out more quickly. Figures 10 and 11 show the ply orientation on the
plate’s response. It is clear that the increase of the angle has an inverse effect on
the vibration control of the plate for both symmetric and antisymmetric angle-ply
layup. However, this effect is negligible.

Finally, the effect of the sensor/actuator pair’s position on the response of the
simply supported plate is investigated. Four pairs of piezoelectric sensors/actua-
tors are bonded on different positions of the upper and lower surfaces of the plate,
as shown in Figure 12. Each sensor/actuator patch has dimensions of
100 mm×100 mm. It can be seen from Figure 13 that when the sensor/actuator
pairs are bonded on the center or the plate, the control effect is the best.

6. CONCLUSIONS

Based on the classical laminated plate theory, a finite element model is
developed to study the shape control and active vibration suppression of laminated
composite plates with integrated piezoelectric sensors and actuators. The
formulations are derived using Hamilton’s principle. By incorporating a simple
negative velocity control algorithm, the sensors and actuators are coupled into
piezo-pairs through a closed loop to provide active feedback control effect on the
plates. The model is validated by comparing with existing results documented in
the literature. Some numerical results are presented. The influence of stacking
sequence and position of sensors/actuators on the response of the composite plate
is evaluated. Using the model presented here, more complicated loading conditions
and geometries can be analyzed. With some modification, the model can be easily
extended to shell problems.
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